Lower bounds for the Quadratic Semi-Assignment Problem
نویسنده
چکیده
In this paper we will present class of new lower bounds for the Quadratic Semi-Assignment Problem (QSAP). These bounds are based on recent results about polynomially solvable cases, in particular we will consider the QSAP's whose quadratic cost coefficients define a reducible graph. Several lower bounds will be computationally compared, moreover we will present a method which improves these bounds by means of Lagrangean decomposition.
منابع مشابه
Robust Quadratic Assignment Problem with Uncertain Locations
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...
متن کاملQuadratic Semi-Assignment Problems on Structured Graphs
The paper presents a class of polynomially solvable instances of Quadratic SemiAssignment Problem. Some properties of this class are illustrated. In the light of these results lower bounds and solution techniques for the general case are proposed. A computational comparison of some lower bounds is reported.
متن کاملLower Bounds for the Quadratic Assignment Problem
We investigate the classical Gilmore-Lawler lower bound for the quadratic assignment problem. We provide evidence of the difficulty of improving the Gilmore-Lawler Bound and develop new bounds by means of optimal reduction schemes. Computational results are reported indicating that the new lower bounds have advantages over previous bounds and can be used in a branch-and-bound type algorithm for...
متن کاملOn semidefinite programming bounds for graph bandwidth
We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, 235(1):25-42, 2000]...
متن کاملA New Lower Bound Via Projection for the Quadratic Assignment Problem
New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making eecient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound is easy to implement and often provides high quality bounds under an acceptable computational eeort.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995